Bacterial Motility
- 00:54:04
Description |
---|
Much is known about the swimming behavior of Escherichia coli. I will mention early work on tracking that revealed E. coli’s biased random walk, followed by the realization that bacterial flagella rotate rather than wave or beat. Then I will describe the signaling network that couples the receptors to the flagella, including adaptation that occurs both at the input and at the output of this network, as receptors are methylated to retain activity and motors are remodeled to optimize their operating point. The motor also adapts to changes in viscous load, adding or removing force-generating units as required to provide adequate torque. Flavobacterium johnsoniae, another rod-shaped Gram-negative bacterium, has neither flagella nor pili and is unable to swim, but it glides over surfaces by driving an adhesin, sprB, over its surface along spiral tracks. If cells are sheared in the manner used for tethering E. coli and one adds anti-sprB antibody, cells stop gliding and spin, but at constant speed rather than constant torque, so these cells are equipped with a new kind of rotary motor. But how then does one go from rotation to translation? We think we are dealing with a microscopic snowmobile. |
Details |
|
---|---|
Title |
Bacterial Motility |
Creator |
University of California, Berkeley. Dept. of Physics |
Published |
Berkeley, CA, University of California, Berkeley, Dept. of Physics, September 18, 2017 |
Full Collection Name |
Physics Colloquia |
Type |
Video |
Format |
Lecture. |
Extent |
1 streaming video file |
Other Physical Details |
digital, sd., col. |
Archive |
Physics Library |
Note |
Recorded at a colloquium held on September 18, 2017, sponsored by the Dept. of Physics, University of California, Berkeley. originally produced as an .mts file in 2017 Speakers: Howard Berg. |
Usage Statement |
Researchers may make free and open use of the UC Berkeley Library’s digitized public domain materials. However, some materials in our online collections may be protected by U.S. copyright law (Title 17, U.S.C.). Use or reproduction of materials protected by copyright beyond that allowed by fair use (Title 17, U.S.C. § 107) requires permission from the copyright owners. The use or reproduction of some materials may also be restricted by terms of University of California gift or purchase agreements, privacy and publicity rights, or trademark law. Responsibility for determining rights status and permissibility of any use or reproduction rests exclusively with the researcher. To learn more or make inquiries, please see our permissions policies (https://www.lib.berkeley.edu/about/permissions-policies). |
Collection |
Physics Colloquia |
Tracks |
colloquia/9-18-17Berg.mp4 00:54:04 |
Linked Resources |